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Proposition 0.1 (Exercise 1.3.13). Consider the graph on the attached sheet (last page of

this PDF), and denote it X̃. Identify the left and right edges, so that it wraps around a
cylinder. Then identify the top and bottom edges, wrapping it around a torus, using the
double and triple arrows. Define a covering map p : X̃ → X = S1 ∨ S1 by sending each edge
a to the a loop and each each b to the b loop. We claim that this covering space corresponds
to the subgroup of π1(S

1 ∨ S1) generated by all cubes of elements.

Proof. For the sake of argument, say the basepoint of X̃ is the leftmost point. We can see
that the loop a3, going around an a-triangle, projects down to the identity, so p∗(π1(X̃)) has
a3 as a generator. Likewise, going around a b-triangle gives b3 as a generator. Going around a
hexagon gives (ab)3 as a generator. Perhaps less obviously, it also has (ab−1)3 as a generator.
Starting at our basepoint (or any point), taking the a edge, then b edge backwards, etc. gets
us back to our starting point because we wrap around the top. More generally, for any word
in the free group on a, b, traversing that word three times on our graph gets us back to where
we started, so p∗(π1(X̃)) is the desired subgroup.

Lemma 0.2 (Exercise 1.3.14). Z2 ∗ Z2 is isomorphic to Zoφ Z2, where φ : Z2 → Aut(Z) is
the map 0 7→ IdZ and 1 7→ (x 7→ −x).

Proof. We have the following presentation for Z2 ∗ Z2:

〈 a, b | a2, b2 〉

In the semidirect product described, Z oφ Z2, let a = (1, 1) and b = (0, 1). Then

a+ a = (1, 1) + (1, 1) = (1 + φ(1)(1), 0) = (1 +−1, 0) = (0, 0)

so 2a = 2b = 0. (Here we’re writing the operation in Z oφ Z2 additively, but we could also
write 2a as a2.) So ZoφZ2 is generated by a, b, and we have the same relations as in Z2 ∗Z2,
so they are isomorphic by a 7→ a and b 7→ b.

Lemma 0.3 (Exercise 1.3.14). Define φ : Z2 → Aut(Z) by 0 → Id and 1 7→ (x 7→ −x).
All subgroups of Z oφ Z2 are of the form 0,Z2, nZ, or nZ oφ Z2 where n ∈ N. There is a
subgroup of each type for every n ∈ N.
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Proof. Let G = Z oφ Z2 and let H ⊂ G be a subgroup. Assume H is not trivial and
H 6= 〈(0, 1)〉. Then there exists (n, 0) ∈ H with n positive, and we choose n so that |n| is
minimized (and still positive). If (0, 1) 6∈ H, then H is the cyclic subgroup generated by
(n, 0), which is of the form nZ. If (0, 1) ∈ H, then H is generated by (n, 0) and (0, 1), so H
has the form nZ oφ Z2.

Now we show there is a subgroup of each type for every n ∈ N. The subgroup generated
by (0, 1) is Z2. The subgroup generated by (n, 0) is nZ. The subgroup generated by (n, 0)
and (0, 1) is nZ oφ Z2.

Proposition 0.4 (Exercise 1.3.14). The path connected covering spaces of RP2 ∨ RP2 are
itself, its universal cover, and covering spaces of the following two forms. First, chains of
2n 2-spheres forming a looped “necklace” of 2n beads.

. . .

The second type is a chain of n 2-spheres with a copy of RP2 wedged at each end (with n = 0
or n ∈ N).

. . .RP2∨ ∨RP2

Proof. As shown above, all subgroups of π1(RP2∨RP2) are of the form 0,Z2, nZ, or nZoφZ2

for n ∈ N. The trivial subgroup corresponds to the universal covering, depicted in Example
1.48 (Hatcher pg. 78). The necklace with 2n copies of S2 covers RPn ∨RPn similarly to the
universal cover, so the image subgroup is generated by (ab)n, which is the subgroup nZ of
ZoφZ2. The covering of n copies of S2 with a copy of RP2 at each end induces the subgroup
generated by a and a word of the form b, bab, babab, . . . which corresponds to being generated
by (0, 1) and (n, 0), so the subgroup is nZoφ Z2. Note that this holds for n = 0 as well.

Lemma 0.5 (for Exercise 1.3.18). Let p1 : X̃1 → X and p2 : X̃2 → X be covering maps so

that there is a covering map q1 : (X̃1, x̃1) → (X̃2, x̃2) that is a lift of p1 and a covering map

q2 : (X̃2, x̃2)→ (X̃1, x̃1) that is a lift of p2. Then X̃1, X̃2 are isomorphic as (based) covers.

Proof. We have the following commutative diagram,
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X̃1 X̃2 X̃1 X̃2

X

q1

p1 p2

q2

p1

q1

p2

from which we can extract the following commutative triangles:

X̃1 X̃2

X̃1 X X̃2 X

p1 p2

p1

q2q1

p2

q1q2

This says that q2q1 and q1q2 are respective lifts of p1 and p2. But another lift of p1 is IdX̃1
,

and another lift of p2 is IdX̃2
. Since q2q1(x̃1) = x̃1 and q1q2(x̃2) = x̃2, by uniqueness of lifting

we get q2q1 = IdX̃1
and q1q2 = IdX̃2

. Thus q2q1 is an isomorphism of (based) covers.

Proposition 0.6 (Exercise 1.3.18, part one). Let X be path connected, locally path connected,
and semilocally simply connected. Then X has an abelian covering space that is a cover of
every other abelian covering space of X. This universal abelian covering space is unique up
to isomorphism.

Proof. First we construct the universal abelian cover. Let H ⊂ π1(X) be the commu-
tator subgroup. By Proposition 1.36, there is a covering space pH : XH → X so that
(pH)∗(π1(XH)) = H. By Proposition 1.39, since H is a normal subgroup, so pH : XH → X
is a normal covering, and G(XH) ∼= π(X)/H is abelian, so XH is a normal covering space.

Now let p : X̃ → X be any abelian covering space of X. Let K = p∗(π1(X̃)). Then K is

a normal subgroup of π1(X), and G(X̃) ∼= π1(X)/K is abelian. This implies that H ⊂ K,
since the commutator subgroup is the smallest subgroup so that π1(X)/H is abelian. Then

(pH)∗(π1(X̃)) = H ⊂ K = p∗(π1(X))

by Proposition 1.33, there is a lift q so that the following diagram commutes.

X̃

XH X

p

pH

q

We claim that q is a covering map. Let x̃ ∈ X̃. We need to find a neighborhood of x̃ that is
evenly covered (with respect to q). Let x = p(x̃). Since XH and X̃ are covering spaces, there
exist evenly covered neighborhoods U, V of x with x ∈ U ∩V where U is evnely covered with
respect to p and V is evenly covered with respect to XH . Then

p−1(U ∩ V ) =
⊔
α

(U ∩ V )α ⊂ X̃

p−1H (U ∩ V ) =
⊔
β

(U ∩ V )β ⊂ XH
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Choose the unique α0 so that x̃ ∈ (U∩V )α0 . The set (U∩V )α0 is our candidate for an evenly
covered neighborhood of x̃. Note that p|(U∩V )α0

: (U ∩ V )α0 → U ∩ V is a homeomorphism;

denote its inverse by p−1. Since q is a lift of p, q maps p−1H (U ∩ V ) to p−1(U ∩ V ), so some
nonempty subset of p−1H (U ∩ V ) gets mapped to (U ∩ V )α0 (by q).

(U ∩ V )α0

⊔
i(U ∩ V )βi U ∩ VpH

q
p−1

On
⊔
i(U ∩ V )βi , we have that q = p−1pH , so q−1((U ∩ V )α0) =

⊔
i(U ∩ V )βi , and q = p−1pH

maps each (U ∩ V )βi homeomorphically to (U ∩ V )α0 since p−1 is a homeomorphism and pH
maps each (U ∩V )βi homeomorphically to U ∩V . Thus q is a covering map. This concludes
the proof that XH is a cover of every other abelian covering of X.

Now for uniqueness. Suppose that p : X̃ → X is another abelian covering space that
covers every abelian covering space of X. Then there are covers q : X̃ → XH and q′ : XH →
X̃ that make the following diagrams commute.

X̃ X̃

XH X XH X

p p
q′

pH

q

pH

Then by the previous lemma, X̃ and XH are isomorphic as covers. Hence XH is unique up
to isomorphism.

Proposition 0.7 (Exercise 1.3.18, part two). The universal abelian cover for S1 ∨ S1 is an
infinite two dimensional lattice, a piece of which is depicted below:

a

a

a

a

a

a

b

b

b

b

b

b

The universal abelian cover for S1 ∨ S1 ∨ S1 is a three dimensional infinite lattice generated
by a, b, c.

Proof. The universal abelian covering of S1 ∨ S1 corresponds to the commutator subgroup
of Z ∗ Z. After taking the quotient by the commutator subgroup, we get a cover with
fundamental group Z×Z. In the case of S1∨S1∨S1, we take the quotient of Z∗Z∗Z by its
commutator subgroup, so the universal abelian cover has fundamental group Z×Z×Z.
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Proposition 0.8 (Exercise 1.3.20, part one). The following represents a non-normal cov-
ering of the Klein bottle by itself. We “stretch” the fundamental polygon of the Klein bottle
horizontally and insert two more vertical lines.

a

a

a

a

a

a

b b b b

Then we map this to the original “square” representation of the Klein bottle, drawn below,
by sending each line labelled a to the line a and each line b to the line b.

a

a

b b

Proof. Let K denote the Klein bottle, and denote the above map by p : K → K. It is a
covering map by construction. We need to show that it is not a normal covering. We know
that the fundamental group π1(K) has the presentation

π1(K) ∼= 〈 a, b | abab−1 = e 〉

since K is built by attaching a 2-cell to the above depicted fundamental polygon. The
induced map p∗ : π1(K) → π1(K) sends b to itself, but maps a to a3, so the subgroup
corresponding to this cover is

p∗(π1(K)) = 〈 a3, b | abab−1 = e 〉

We claim that this subgroup is not normal in π1(K). If it were normal, then we would have
aba−1 ∈ p∗(π1(K)), but

aba−1 = a(aba)a−1 = a2baa−1 = a2b

But a2b is not in p∗(π1(K)), so this is not a normal subgroup. Thus by Proposition 1.30
(Hatcher pg. 71) this is a non-normal covering.

Definition 0.1. Let p : (X̃, x̃0) → (X, x0) be a universal covering space. Then the action
via lifting of π1(X, x0) on the fiber p−1(x0) is the group action

π1(X, x0)× p−1(x0)→ p−1(x0) ([γ], x̃) 7→ [γ]Lx̃ = γ̃(1)

where γ̃ is the unique lift of γ satisfying γ̃(0) = x̃.
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Definition 0.2. Let p : (X̃, x̃0) → (X, x0) be a universal covering space, with G(X̃) the
group of deck transformations. Given [γ] ∈ π1(X, x0), there is a unique lift η̃ with η̃(0) = x̃0.
There is an isomorphism

π1(X, x0)→ G(X̃) [γ] 7→ φγ

where φγ is the unique deck transformation such that φγ(x̃0) = η̃(1). The action via deck
transformations of π1(X, x0) on the fiber p−1(x0) is

π1(X, x0)× p−1(x0)→ p−1(x0) ([γ], x̃) 7→ [γ]Dx̃ = φγ(x̃)

Proposition 0.9 (Exercise 1.3.27, part one). Let X = S1 × S1 and let p : R2 → S1 × S1

be the universal cover. For this covering space, the action via lifting and the action via deck
transformations are the same.

Proof. We have π1(X) abelian, so this is a special case of the more general statement below.

Proposition 0.10 (Exercise 1.3.27, part two). Let X = S1 ∨ S1 with basepoint x0, and let

p : X̃ → X be the universal cover. The action via lifting is not the same as the action via
deck transformations.

Proof. Let Fa,b denote the free group generated by a, b, so π1(S
1 ∨ S1) = Fa,b. Then X̃ is

the Cayley graph of Fa,b. We denote the vertices of X̃ by elements of the free group, in the
following way, by denoting the vertex reached by traversing a word w ∈ F[a, b] by x̃w, so we
have

p−1(x0) = {x̃w : w ∈ Fa,b}

In particular, we denote x̃0 by x̃e, where e is the identity. Let a = [γ] ∈ π1(X, x0). Using
the action via lifting, we get

[γ]Lx̃w = γ̃(1)

where γ̃ is the unique lift of a starting at x̃w. Looking locally at X̃ at x̃w, the lift γ̃ must be
just the path going along the path a from x̃w, so

[γ]Lx̃w = x̃wa

On the other hand, using the action from deck transformations,

[γ]Dx̃w = φγa(x̃w)

where φγ is the unique deck transformation mapping x̃e to η̃(1), where η̃ is the unique lift
of γ so that η̃(0) = x̃e. The unique lift of γ starting at x̃e is the path from x̃e to x̃a, so φγ
is the unique deck transformation mapping x̃e to x̃a. Since this deck transformation maps
x̃e to x̃a, it must also map the neighboring vertices of x̃e to the neighbors of x̃a, preserving
paths, so

[γ]Dx̃b = φγ(x̃b) = x̃ab
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In general, we see that
[γ]Dx̃w = x̃aw

So the action via lifting [γ] = a is acting on Fa,b by multiplying by a on the right, while the
action via deck transformations is acting on Fa,b by multiplying by a on the left. These two
actions are not the same, since ab 6= ba. More concretely, we have shown that

[γ]Lx̃b = x̃ba 6= x̃ab = [γ]Dx̃b

so the actions are not the same.

Proposition 0.11 (Exercise 1.3.27). Let p : (X̃, x̃0) → (X, x0) be a universal cover. There
are two actions of π1(X, x0) on the fiber p−1(x0), given by lifting loops at x0, and the action
of restricting deck transformations to the fiber. When π1(X, x0) is abelian, these actions
always agree.

The following is an incomplete proof. Let x̃ ∈ p−1(x0), and let [γ] ∈ π1(X, x0) and, and
choose a representative loop γ : I → X based at x0. There are unique lifts γ̃, η̃ so that
γ̃(0) = x̃ and η̃(0) = x̃0. Let φγ be the unique deck transformation satisfying φγ(x̃0) = η̃(1).
Let α̃ be the unique lift of γ such that α̃(0) = φγ(x̃0). By definition,

[γ]Lx̃ = γ̃(1) [γ]Dx̃ = φγ(x̃)

[γ]D[γ]Lx̃ = φγ(γ̃(1)) [γ]L[γ]Dx̃ = α̃(1)

Let β̃ be the unique (up to homotopy) path from [γ]Lx̃ to [γ]L[γ]Dx̃. Let ψ̃ be the unique (up

to homotopy) path from x̃ to φγ(x̃). Since the endpoints are in p−1(x0), both β̃, ψ̃ project
down to loops [β], [ψ] ∈ π1(X, x0). In particular, we have the loop[

γ̃ · β̃ · α̃ · ψ̃
]
∈ π1(X̃, x̃0)

which projects down to
[γ][β][γ]−1[ψ]−1 ∈ π1(X, x0)

since both α̃ and γ̃ are lifts of γ. Since X̃ is a universal cover, all loops are trivial, so this
image loop is trivial. Since π1(X, x0) is abelian, this implies

1 = [γ][β][γ]−1[ψ]−1 =⇒ [γ][γ]−1[β][ψ]−1 =⇒ [β] = [ψ]

I think this should give us what we want, but I’m not sure how to finish it.
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